
ECE 264 Spring 2023
Advanced C Programming

Aravind Machiry
Purdue University

Most of the material is derived from Prof. Lu’s slides.

Welcome

Instructor: Aravind Machiry
• 2020 PhD. Computer Science, UCSB
• Join Purdue in 2021 as an assistant professor

• Research areas: Computer Security, Embedded Systems, Program
Analysis.

• Webpage: https://machiry.github.io/

• Lab page: https://purs3lab.github.io/

https://machiry.github.io/
https://purs3lab.github.io/

Our Work

BootStomp [SEC 17]
KARONTONE [SP 20]

BinTrimmer [DIMVA 19]
Boomerang [NDSS 17]

DIANE [SP 21]
GlitchResistor [DSN 21]

Binary Analysis Source Code Analysis

Systems Verification

Machine Learning

Human interaction
Dynodroid [SEC 17]

CLAPP [SP 20]
Boomerang [NDSS 17]

Trust.IO [CNS 20]
PRETENDER [RAID 19]

CONWARE [Asia CCS 21]

SLAP [ACSAC 18]
ARBITRAR [SP 21]

BRAN [Asia CCS 21]

DR.CHECKER [SEC 17]
DIFUZE [CCS 17]

Fingerprint [NDSS 18]

Dynodroid [FSE 13]
Checked C [OOPSLA 22]

Spider [SP 20]

We will be using GitHub classroom for all
our programming assignments.

Course webpage:
https://purs3lab.github.io/ece264/

Logistics

https://purs3lab.github.io/ece264/

Textbook

ECE 264 Uses
Linux

If you use Windows, MacOS, Android, or anything other than Linux, you will definitely
receive F in this class.

Why Linux?

 Linux is "UNIX-like"
 iOS, Anroid are also "UNIX-like"
 Top 500 (fastest 500 computers in the world)
 Linux is widely used in embedded systems
 (real-time improvements) Used in autonomous vehicles
 "At least" 67% web servers run Linux (wired.com, 2016/08/25)
 Many computer courses use Linux (because grading is easier)

Get Linux

 Download Linux and install on your computer
o Brand new computer
o Dual boot if it already has an operating system

 Virtual machine (such as Virtualbox), Linux coexists with
another operating system (such as Windows)
 Cloud (Amazon EC2, Microsoft Azure, Google Cloud ...)
 Purdue Engineering students: thin linc

Thin Linc

 Connect to the servers managed by ECN (Engineering
Computer Networks)
 ECN is the IT department of Purdue Engineering
 Advantages:
o ECN updates software
o Security is managed by experts
o These are very fast computers
o Many courses use these computers for grading

Linux at Purdue ECN

 Many ways to connect:
o Install thinlinc client (recommended)
❑ Detailed instructions:

https://engineering.purdue.edu/ECN/Support/KB/Docs/EC
EThinlinc

o Install secureCRT (not recommended)
o Install putty (not recommended)
o https://desktop.eceprog.ecn.purdue.edu/ (Not recommended)

 Strongly discouraged: Cygwin and MinGW (not real Linux)
 Do not use telnet (not secure)

https://engineering.purdue.edu/ECN/Support/KB/Docs/ECEThinlinc
https://engineering.purdue.edu/ECN/Support/KB/Docs/ECEThinlinc
https://desktop.eceprog.ecn.purdue.edu/

connect to
desktop.eceprog.ecn.purdue.e
du

your account

Terminal and
Command Line

 Combine multiple commands

 Automate tools, without human
clicking or dragging

Why terminal? Isn’t GUI better?

 GUI (Graphical User Interfaces) are good for humans, not
computers
 Terminals allow you to automate many things that are difficult if
you use GUI
 Terminals allow you to scale up to manage hundreds or
thousands of machines
 In data centers, everything is based on terminals, no GUI
 Knowing how to use terminals give you additional skills (needed
for many positions)

 This is a "command prompt". You enter commands after the prompt.

 "bash" is the default working environment (called "shell")

 4.1 means the version

Frequently Used
Commands

ls (list)

 ls: list the files and directories (also called "folders")
 ls -l: list with long (more information); beginning 'd': directory

ls (list)

 ls: list the files and directories (also called "folders")
 ls -l: list with long (more information); beginning 'd': directory

mkdir: make new directory (i.e., folder)
cd: change (i.e. enter) directory

vim: text editor

cp src dest: copy file src to dest
diff file1 file2: compare

prog2.c is identical to prog.c
diff shows nothing

echo "message" >> file: add a line
cat -n file: show file with line number

Append at the end of the file

diff shows the difference, with line numbers

grep word file: print the lines with this word
in the file

rm: remove a file (irreversible)

prog2.c has been deleted

mv (move): rename a file

redirect output using >>

pipe (|): take output from one program as
input of another program

Popular First and Last Names

head: print the first 10 lines

tail: print the last 10 lines

head -n: first n lines

tail -n: last n lines

pipe (|): output as input of next

sort -n: sort as numbers

sort -k c: sort by the c's column

sed: substitute a letter

sed: substitute a word

awk: keep a column

Enjoy Linux

/*

 * first.c

 *

 * Created by yunglu@purdue.edu

 *

 */

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * * argv)

{

 printf("Hello C\n");

 return EXIT_SUCCESS;
}

Components of a C Program

C Programs has three formats

These formats allow the same programs (text format) to
run on different types of machines.

48

Text Format
Human Readable

Executable Format
Machine Readable

Object Format
Machine Readable

Compilation + Linking

ECE 264 uses gcc

gcc -c gcc
Compilation Linking

gcc compiler

• Convert text file (human readable) to executable file (machine)
• Detect likely mistakes if you ask gcc to do that
• gcc -std=c99 -g -Wall -Wshadow -pedantic -Wvla –Werror
• -std=c99: using the C standard announced in 1999
• -g : enabling debugging
• -Wall : enable warning messages
• -Wshadow : detecting shadow variables
• -pedantic : restricting standard C
• -Wvla : detecting variable length array
• -Werror : treating warnings as errors

create an alias for gcc

Warning: unused variable

Compiler warnings are your
“first-line of defense” detecting
erroneous code.

Unused variables are likely caused
by mistyping.

Shadow Variables

52

Shadow Variables

53

Shadow Variables

54

without gcc
warning

Shadow Variables

55

without gcc
warning

with gcc warning

./ ensures that you are running
the program in this directory

-o (lower case) specifies the
name of the executable

-o (lower case) specifies the
name of the executable

Caution:
• Do not call your executable “test”.

Test is a Linux command.
• Do not put your text file after -o.

Doing so erases your text file.

conditional compilation

61

Notice the difference
ifdef and
ifndef (with n)

Version Control using git

62

git vs github

• git: distributed version control tool
• github: cloud service for git
• You may use git without using github
• ECE 264 uses github to distribute homework
• You need to use git to receive assignments
• You are encouraged to use version control for your own

work; version control is not a requirement.

63

Why is github not required?

• github is a commercial entity and ECE 264 does not force
students to use commercial services.

• If you decide to use github (or any other version control

service), please ensure your work is private.
• Public repository for ECE 264 is academic dishonesty.

64

65Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

66Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

1

67Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

2git clone

68Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

3

69Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

4git pull

70Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

5

71Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

6

git commit

72Source: https://www.tutorialspoint.com/git/git_life_cycle.htm

7
git push

Distributed Version Control

73

Repository
(e.g., github)

local copy
(e.g., your office)

local copy
(e.g., teammate Cathy)

local copy
(e.g., teammate Bob)local copy

(e.g., teammate Alice)

local copy
(e.g., your home)

local copy
(e.g., teammate David)

git clone

Distributed Version Control

74

Repository
(e.g., github)

local copy
(e.g., your office)

local copy
(e.g., teammate Cathy)

local copy
(e.g., teammate Bob)local copy

(e.g., teammate Alice)

local copy
(e.g., your home)

local copy
(e.g., teammate David)

git commit

git commit

Distributed Version Control

75

Repository
(e.g., github)

local copy
(e.g., your office)

local copy
(e.g., teammate Cathy)

local copy
(e.g., teammate Bob)local copy

(e.g., teammate Alice)

local copy
(e.g., your home)

local copy
(e.g., teammate David)

git push

Distributed Version Control

76

Repository
(e.g., github)

local copy
(e.g., your office)

local copy
(e.g., teammate Cathy)

local copy
(e.g., teammate Bob)local copy

(e.g., teammate Alice)

local copy
(e.g., your home)

local copy
(e.g., teammate David) git pull

git commands

• “git commit” creates on local computer a snapshot of the changes
• “git push” modifies the repository
• “git pull” obtains the latest changes in the repository

Use git effectively
• “git commit” and “git pull” often. If you work alone, “git push” often.
• If you work in a team, “git push” only working code.
• Do one thing at a time. Finish the work, test it, and push it.
• Do not commit or push too many changes at once.

77

We will be using GitHub classroom for all
our programming assignments.

Programming Assignments

Knowledge of git is necessary to be
successful in this course.

Programming Assignments
• Will be released in batches -- ~ 5 assignments at a time.
• Submission deadline: 1 assignment per week -- Refer course

webpage for more details.
• No extensions.
• Other rules:
 Refer: https://purs3lab.github.io/ece264/labs/

https://purs3lab.github.io/ece264/labs/

Accessing Programming Assignments
• Step 1: Fill up this form: https://forms.gle/afjQoHubsh67GKA1A by

Tomorrow.

• Step 2 (After 13th Friday): Click on the link provided under each
assignment to access the homework.

https://forms.gle/afjQoHubsh67GKA1A

Accessing Programming Assignments

Accessing Programming Assignments

Accessing Programming Assignments

Accessing Programming Assignments

Accessing Programming Assignments

Submitting Programming Assignments

git add sort.c
git commit -m "Adding solution" Commit you changes

to local repo.

Submitting Programming Assignments

git add sort.c
git commit -m "Adding solution"

git push

Commit you changes
to local repo.

Push changes to your git repo.

Submitting Programming Assignments

git add sort.c
git commit -m "Adding solution"

git push

git tag final_ver
git push origin final_ver

Commit you changes
to local repo.

Push changes to your git repo.

Tag your repo to say that it is
ready to grade.

Important: if you don’t tag, we don’t grade!

Submitting Programming Assignments

git add sort.c
git commit -m "Adding solution"

git push

git tag final_ver
git push origin final_ver

git tag final_ver -f

git push origin final_ver -f

Commit you changes
to local repo.

Push changes to your git repo.

Tag your repo to say that it is
ready to grade.

If you make more changes..do
not forget to re_tag

Accessing your grades

Accessing your grades

Welcome to Computer
Programming

It is challenging and you will enjoy it.

